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The effect of the grid in the vortex-in-cell algorithm on the linear growth rates for an 
interface undergoing Rayleigh-Taylor instability is studied. Results show that the effect of the 
grid is qualitatively equivalent to the effect of surface tension. It is also found that only 
wavelengths which are ten times longer than the grid spacing are resolved with error of less 
than 10% in the growth rate. 6 1989 Academic Press, Inc. 

1. INTRODUCTION 

Frequently in fluid mechanics we are interested in describing the evolution of a 
material line. Usually, this material line represents the interface between two fluids 
or two regions of the same fluid with different properties. In most of the cases the 
fluid line is highly unstable and the shape of the line becomes very complex. Typical 
examples of this are the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. In 
these two cases, when the fluid is assumed to be ideal, the interface is a vortex sheet 
whose vorticity is generated baroclinically. 

During the last few years a great variety of numerical methods have been 
developed to study the evolution of these interfaces. Most of them represent the 
interface by a set of Lagrangian markers. Among these Lagrangian methods, we 
distinguish three of them, which are the boundary integral method, the point vortex 
method, and the vortex in cell (WC) method. 

In the boundary integral method [2] the evolution equations for the interface are 
written in terms of Fredholm integral equations. The resulting integral equations 
have convergent Neumann series and are solved by iteration. If M is the number 
of markers used to represent the interface, then the number of operations per 
iteration is of order M2. This method has the problem that when the interface is 
highly deformed many markers are need to describe the interface and the iteration 
converges very slowly making the method computationally expensive. 

In the point-vortex method [83 the vorticity of the interface is assumed to 
be concentrated in the markers and each marker is a point vortex with a given 
circulation. Here, the velocity of a marker is determined by a direct summation of 
the effect of all the point vortices on the marker. The summation is again of order 
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M* operations. Again when the interface is complex M has to be large and the 
method becomes expensive. 

Finally in the VIC metod [4, 71 the interface is again described by point vortices 
but instead of computing the velocity field on the markers by a direct summation, 
the Poisson equation for the stream function is solved on a given grid. The first step 
is to distribute the circulation of the markers on a fixed uniform grid (smoothing 
step). The Poisson equation for the stream function is solved on the grid for the 
vorticity distribution obtained from the smoothing step. And finally, the velocity at 
the interface is computed by some kind of interpolation from the results in the grid 
(interpolation step). This method has the advantage that the number of operations 
to compute the velocity at the interface are O(N2 log(N)), where N2 is the number 
of grid points. But in general N$ M, so the method is very cheap from the 
computational point of view. 

As we have seen, the introduction of the grid produces a considerable reduction 
in the computational cost, but we have to pay some price for doing this. We are 
losing spatial accuracy in the results. The spatial resolution of the velocity held is 
of the order of the grid size. Baker’s [l] work analyzing the rollup of vortex sheets 
shows that the large scale (relative to the grid size) motion is accurately reproduced 
by the VIC algorithm and the small scale motion is strongly affected by the grid. 
In the present work we try to give a quantitative estimate of the resolution that we 
lose by introducing the grid. We are going to focus our attention only on the spatial 
resolution and we will not deal with the errors associated to the time discretization 
of the evolution equations. 

Moore [S] did the first analysis of the effect of the discretization on the accuracy 
of the point vortex method. He studied the accuracy of representing a vortex sheet 
by a set of point vortices. Here, we complement Moore’s analysis by studying 
together the effect of the discretization of the vortex sheet into point vortices and 
the effect of the grid. 

Our study will concentrate on the Rayleigh-Taylor instability. To measure the 
effectiveness of the method, in Section 2 we analytically obtain an expression for the 
linear growth rate of infinitesimal perturbations of different wavelengths on an 
initially flat interface which is Rayleigh-Taylor unstable. In Section 3 we compare 
these growth rates with the theoretical ones and give some conclusions. 

2. ANALYSIS OF THE ALGORITHM 

Consider two superposed inviscid fluids which are initially separated by a straight 
horizontal interface in a gravity field. Let p2 be the density of the upper fluid, and 
p1 the density of the lower fluid. When pz > p, the interface is unstable. The 
interface behaves as a vortex sheet with strength y(s, t) which is determined by the 
evolution equation [ 71 



LINEAR ANALYSIS OF VORTEX-IN-CELL 389 

where the effect of the surface tension has not been considered. Here A is the 
Atwood ratio defined as 

(2) 

U is the velocity at the interface defined as the average between the velocities in 
both sides 

“1 + “2 u=7. (3) 

The time derivative d/dt represents a total derivative following the interface and is 
related to the Eulerian derivatives by the expression 

In Eq. (l), s is the unit vector tangent to the interface, s is the arclength, and g is 
the acceleration of the gravity. The interface is described by x = (x(s, t), JJ(S, t)). 

To describe the evolution of the vortex sheet, in addition to Eq. (1) we need the 
kinematic relations that describe the motion of the interface 

dx 
-U. 

z- (5) 

U can be computed in terms of the position x and the strength y of the vortex sheet 
by solving the Poisson equation for the streamfunction. 

To study the linear stages of the instability we linearize Eqs. (1) and (5). Taking 
into account that u1 = u2 on the interface in linear theory, the linear forms of 
Eqs. (1) and (5) is 

ay at= v, (6.2 

where u is the vertical component of U and can be computed in terms of y. Here 
all the variables have been made dimensionless taking as the basic length L, the 
width of the computational box, and as the basic time scale m. 

Equations (6) allow solutions of the form 

(7) 
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which describe the time evolution of infinitesimal perturbations of wave number k. 
0 represents the growth rate of the instability and is given by 

lT=,iT;;iT. (8) 

We are interested in studying the effect of the grid in the linear growth rate of 
the instability for a vortex-in-cell (VIC) simulation. To do this, we have to analyze 
the effect of each step of the VIC algorithm on an infinitesimal perturbation of a 
given wavelength k. 

Let us assume that we have a grid which is periodic on the (0, 1) interval in the 
x direction and infinite in the y direction. Each cell of the grid is a square of side 
h, and h = l/N. We will represent the vortex by Nm point markers, i.e., we assume 
m markers per cell (see Fig. 1). The VIC algorithm can be thought of as a linear 
operator which gives v as a function of y, i.e, 

v = L/v,,(Y). 

The Fourier transform of the continuous version of this operator i is 

(9) 

.t = - i/2, (10) 

where i= J-1, 
In the VIC algorithm we can distinguish three different steps. The first one is the 

distribution of the circulation of the markers on the grid (smoothing step). To per- 
form this step we use the so-called area-weighting-rule (AWR) [4]. This step gives 
us a discrete distribution of vorticity o~,~ on the grid, and the second step is to solve 
the Poisson equation for the streamfunction +j,n on the grid to determine the flow 
field. The boundary conditions that are assumed for the streamfunction are that $ 
is periodic in x and goes to zero as y + f co. In the third and last step, we 

h=l/N I-+ 
n=l -i- 

c-c 
n=O 

bl 2.. Inl 

n=-I 

I--+ 

7- 
NTERFACE --b- 

j-l i jtl j+2 

FIG. 1. Geometry of the problem. 
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interpolate the velocity field corresponding to the computed streamfunction for the 
interface again (interpolation). To perform this step two different methods are 
generally used. These methods are the AWR and the interpolation due to Peskin 
[S]. Both methods will be studied in the present work. We are going to analyze 
independently the effect of each of these three steps. 

Before going into the analysis of the VIC algorithm, we analyze the spatial 
derivative of Eq. (6.1). Introducing (7) into (6.1) and using a centered difference 
scheme to compute the derivative along the arc length (notice s is equivalent to x 
in the linear analysis), we have that 

4nik 
Y= ; y0e2nikxu( a, m), 

where a = 2nkh. The factor u is given by 

d((a,m)=zsin It . 
0 m 

This operation is independent of the grid. It depends only on the markers, i.e., 
a(a, m) =f(a/m). Notice that as u/m + 0 then CI + 1. In Fig. 2 we show a versus a 
for different values of m. 

FIG. 2. Effect a of the spatial differentiation versus u = Znk/N for different values of m. 
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2.a. Distribution of the Vorticity (AWR) 

The circulation associated with each of the markers r is defined as 

rj,,= e+ i 10, t) ds, (13) e- 

where e- and e + represent mid points between markers (see Fig. 3). 
Following the AWR the vorticity CO, at the grid point j is given by (see Fig. 3) 

oj = y0he2nikh(i - 1) t + $ 1;: (m _ 1) [ e2niWm + e - 2nikhNm (14) 

To obtain this expression, the integral of Eq. (13) has been approximated by 
r,,= yj,,h/m (see Figs. 1 and 3). 

Performing the summation, Eq. (14) can be rewritten in the form 

where 

oj = y’he 2nik(j- l)hp(a, m), (15) 

Notice that for fixed m, as a + 0, B + 1. Figure 4 shows /I versus a for different 
values of m. 

2.b. Poisson Solver 

In this step we have to compute the flow field induced by the vortex sheet. This 
flow field satisfies the following Poisson equation 

A+= --o (17) 

on the grid. 

I 1 I I I ” I J I ” I 1 I ” I I I I 
e- e+ 

I I ml m 

FIG. 3. Geometrical detail of the smoothing of the vorticity of the markers to the grid following the 
area-weighting-rule. 
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a 
FIG. 4. Effect /I of the smoothing step done by the area-weighting-rule versus a = 2xk/N for different 

values of m. 

To solve Eq. (17), we assume that the Laplacian operator has been discretized by 
using the standard five-point operator and we introduce the FFT in the periodic 
direction. The discrete Fourier transform Cc, of the vorticity distribution oj contains 
only one mode ci, . (Q From (11) and (15) it follows that 

When the FFT is applied to the discretized Poisson equation we obtain a system 
of linear algebraic equations for each mode. Each of the equations comes from each 
row of the grid. In our case we have assumed that the grid extends up to infinity 
in the y direction, so that the system has an infinite number of equations. The form 
of these equations is 

(19) 

where n indicates the row in the grid and goes from -cc to + co, and 

T = cos(a) - 2. (20) 

Thus we have to solve is a linear difference equation with given boundary 
conditions. The roots of the characteristic polynomial are 

(21) 
r,=-r+JZ>l, 

r,=-t-JtZ-l<l. 
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As $ has to vanish at ): = + co, the solution of (19) can be written as 

(22) 

To solve the system we have two additional conditions. The first one is that the 
solution has to be continuous at the interface (n = 0), and the second one is given 
by the difference equation at the interface. Satisfying these two conditions we obtain 
that tjCk) at the interface is given by 

which can be rewritten as 

where 

$(kL -(i)(k) 2(1 ;rT,), (23) 

*j= & mj 6(a), (24) 

6(a) = - 2. (25) 
I 

Figure 5 shows 6 versus a. Notice that 6 is independent of the number of markers 
per cell m. 

a 
FIG. 5. Effect 6 of the Poisson solver versus a. 
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This solution is valid only when r # 1. When r = 1 the solution does not vanish 
at y = + co. This occurs when a = 0 or a = 271. Taking the limit as a + 0 we find that 
6 + 1 and the solution is correct. When a + 2n, 6 + 1/(2n - a). Notice that a = 27~ 
corresponds to k = N, i.e., the wavelength that we are considering is equal to the 
grid spacing. 

2.~. Velocity Field Interpolation 

We first consider the case in which the interpolation is performed by using the 
AWR. Assuming centered differences for the velocity, we have that the velocity at 
the interface within the interval (j - 1)h 6 x <j/r is given by 

If we evaluate (26) for the markers we have 

uj ,= II/ ,e2W- l)h/m) 

I 
(e2’- l)~+(e”-ee”)m-~+ ‘1. 

Finally, to relate y with u, we combine Eq. (6.2) with expressions (7) and (27). 
We multiply both terms of the equation by exp( -2nik(l- 1)/z/m), and sum from 
I = 1 to I= m. After some algebra, we get 

where 

ayj= -2nikt,bj[,(a, m), w-4) 

iAa, ml = 
2 sin(u) - sin(2u) 

2am2[ 1 - cos(a/m)]’ 

Again we find that as a -+ 0, 5 -+ 1. Figure 6 shows < versus a for different values 
of m. 

As can be seen from Eq. (26), the AWR produces velocity distributions that are 
continuous but with a discontinuous derivative. Looking at Eq. (5), we can observe 
that the interface will also be continuous but with a discontinuous derivative. 
Looking for smoother velocity fields, another difference scheme has been sometimes 
used for this interpolation step. This scheme is due to Peskin [6]. The velocity at 
a point of the interface is defined in terms of the velocity at the grid points by the 
relation 

‘txY Y) = C ujnh2Djn(x, YX (30) 
i, n 

where 

Dj,n=d(x- [j- l]h)d(y-nh) (31) 

S81/80/2-10 
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FIG. 6. Effect ca of the interpolation step performed following the area-weighting-rule versus a for 

a 

different values of m 

a 
FIG. 7. Effect of the two different interpolating methods: iA. area-weighting-rule (m = 8); cp, 

Peskin’s interpolation. 



LINEAR ANALYSISOF VORTEX-IN-CELL 397 

and 

(1/4h)( 1 + cos(nr/2h)), for Irl <2/z, 
for Irl 32h. (32) 

The weighting function d(r) behaves in the grid as a discrete b-function (see [6]). 
A similar analysis can be done for this interpolation method, but the algebra 

becomes very messy in the case of finite m. However, in the limit of m + CO, the 
algebra is very simple and we find that 

iida) = 
cos(a) - cos( 3a) 
4a2[ 1 - 4a2/7?] ’ (33) 

In Fig. 7 we compare [, and [,. We can notice then even though Peskin’s 
interpolation produces fields which are smoother than the ones produced by the 
AWR, this latter method is more accurate at reproducing the growth rate. 

3. RESULTS AND CONCLUSIONS 

In the previous section we have studied the effect of each one of the steps of the 
VIC algorithm on the growth rate of the linear instability. Here, we are going to 
consider the global effect. Using Eqs. ( 18), (24), and (28) we have 

c7 = JGi @,(a, m), (34) 

where 

@fa(a, m) = ~$3~~. (35) 

Now we can observe that the linear operator associated to the VIC algorithm 
L ,,,,, defined in Eq. (9) is given by 

i - -; (psyp2. N,m - (36) 

In Fig. 8 we show 0, versus a for different values of m. The first thing that we 
can notice is that the effect of m in 0, is very small and for m 3 2 it can be assumed 
the QA is independent of m. This means that the real effect of the discretization is 
due to the grid and not the number of markers. In Fig. 9 we again compare the two 
interpolation methods. Both methods have the-same behavior, but the AWR gives 
better results. In the following we will consider only the AWR method. 

To get a better idea of the meaning of Fig. 8, in Fig. 10 we compare the 
theoretical growth rate @ with the growth rate obtained in the VIC for several 
values of N and for m = 8. We can notice that for k small the results are in very 
good agreement, but for large k the VIC does a poor job. The first thing that we 
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FIG. 8. Global effect 0, of the VIC algorithm using AWR in the interpolation step versus a for 
different values of m. 

FIG. 9. Global effect 8 of the VIC algorithm using the two interpolating algorithms. 

a 
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FIG. 10. Linear growth rate versus the wavenumber k for different grids. The top line represents the 
continuous results (r = J&Z. 

notice is the appearance of a maximum growth rate. This maximum occurs at a 
wavenumber k,,, which is approximately given by 

k max E 0.180N. (37) 

Figures 1 l(a) and (b) show k,,, and cmax = c(k,,,) versus N. 
Another important feature of the VIC growth rate is the existence of a wavenum- 

ber k* for which the instability disappears; i.e., the interface is not unstable for all 
wavenumbers. Looking at Eqs. (29) and (35), it follows that this stabilization comes 
from the interpolation step. Notice that Ta becomes negative for u > rc, i.e., K> N/2, 
whereas the others factors in (35) remain positive in the whole (0,2x) interval. 
Hence, we find that 0, is negative for k > N/2. This means that the modes K > N/2 
do not grow and produce propagating waves. 

All this behavior that we have found is similar to the behavior that is found in 
the continuous problem when surface tension is taken into account. With surface 
tension the linear growth rate is given by [3, p. 4351 

where 

(r* = 2nk( 1 - Bk*), (38) 

B= 
4x2T 

&(PI + P2W2’ 
(39) 
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FIG. 11. (a) Wavenumber of maximum growth rate k,,, versus the size of the grit. (b) Maximum 
growth rate CT,,, versus the size of the grid. 
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T is the surface tension coefficient. The dimensionless parameter B is actually an 
inverse Bond number. The interface is unstable for wavenumbers in the range 
0-c k-c k,, where kc= l/B . I/’ For k > k,. the disturbances propagate without 
growing. Unlike the case when surface tension is absent, there is a wavenumber 
k max of maximum instability which is given by 

k (40) 

The effect of the grid on the growth rate is qualitatively equivalent to the effect 
of the surface tension. In Fig. 12 we compare the growth rate for the VIC algorithm 
for N= 32 and m = 8 with the theoretical growth rate for B= A. Both curves have 
the same zeros and the same qualitative behavior. Hence, in some sense we could 
say that the effect of a grid of size h = l/N is similar to adding a surface tension of 
B = 4/N2. This similarity with surface tension explains the rounded spikes found by 
Tryggvason [7] in computations with the VIC method for A = 1, because surface 
tension tends to smooth out all the possible singularities on the interface. 

From Fig. 9 it follows that to reproduce the growth rate of the instability with 
10% accuracy with the AWR method, we need to have a 6 0.7, i.e., k/N < 0.111. 
For a grid of N = 32 only the three first wavenumbers are resolved with 10% 
accuracy. For the Peskin interpolation method we find that k/N < 0.095. This 
means that only wavenumbers which are ten times longer than the grid spacing h 
are resolved with an accuracy of 10%. 

a 

FIG. 12. Linear growth for N= 32 in the VIC compared with the continuous growth rate for surface 
tension B = &. 
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Notice that the loss of accuracy comes essentially from the vorticity smoothing 
and velocity interpolation steps. The Poisson solver is quite accurate. This suggests 
that new distribution and interpolation schemes should be considered to improve 
the behavior of the vortex-in-cell method. The present analysis could be applied to 
higher order methods in an attempt to find better schemes. 
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